Pharmaceutical Chemistry

Basic Information

About Department

Medicinal chemistry and pharmaceutical chemistry are disciplines at the intersection of chemistry, especially synthetic organic chemistry, and pharmacology and various other biological specialties, where they are involved with design, chemical synthesis and development for market of pharmaceutical agents, or bio-active molecules (drugs).Compounds used as medicines are most often organic compounds, which are often divided into the broad classes of small organic molecules (e.g., atorvastatin, fluticasone, clopidogrel) and “biologics” (infliximab, erythropoietin, insulin glargine), the latter of which are most often medicinal preparations of proteins (natural and recombinant antibodies, hormones, etc.). Inorganic and organometallic compounds are also useful as drugs (e.g., lithium and platinum-based agents such as lithium carbonate and cis-platin as well as gallium).

Preface

Pharmaceutical chemistry in its most common practice—focusing on small organic molecules—encompasses synthetic organic chemistry and aspects of natural products and computational chemistry in close combination with chemical biology, enzymology and structural biology, together aiming at the discovery and development of new therapeutic agents. Practically speaking, it involves chemical aspects of identification, and then systematic, thorough synthetic alteration of new chemical entities to make them suitable for therapeutic use. It includes synthetic and computational aspects of the study of existing drugs and agents in development in relation to their bioactivities (biological activities and properties), i.e., understanding their structure-activity relationships (SAR). Pharmaceutical chemistry is focused on quality aspects of medicines and aims to assure fitness for purpose of medicinal products.

Discipline

Medicinal chemistry is by nature an interdisciplinary science, and practitioners have a strong background in organic chemistry, which must eventually be coupled with a broad understanding of biological concepts related to cellular drug targets. Scientists in medicinal chemistry work are principally industrial scientists (but see following), working as part of an interdisciplinary team that uses their chemistry abilities, especially, their synthetic abilities, to use chemical principles to design effective therapeutic agents. The length of training is intense with practitioners often required to attain a 4-year bachelor’s followed by a 4-6 year Ph.D. in organic chemistry. Most training regimens include a postdoctoral fellowship period of 2 or more years after receiving a Ph.D. in chemistry making the length of training ranging from 10-12 years of college education. However, employment opportunities at the Master’s level also exist in the pharmaceutical industry, and at that and the Ph.D. level there are further opportunities for employment in academia and government. Many medicinal chemists, particularly in academia and research, also earn a Pharm.D (doctor of pharmacy). Some of these PharmD/PhD researchers are RPhs (Registered Pharmacists).